Close

Keynote Speakers

Title: Tensegrity Engineering: Integrating the Design of Structure, Control, and Signal Processing

Robert Skelton
TEES Distinguished Research Professor
Texas A&M University

Abstract
It is well-known that the various disciplines that design the individual components of the final system are not coordinated, except in an ad hoc way. This paper takes some steps toward the formal integration of Structure, Control, and Signal Processing designs. To integrate structure and control we employ the tensegrity structural paradigm. To integrate signal processing and control we employ the new work called Information Architecture, where the precisions and locations of all sensors and actuators are coordinated with the control design, which are all dictated by the closed loop performance requirements, including a cost constraint on the hardware. We assume that sensor or actuator costs are proportional to the precision of the instrument. The design constraints are: i) the cost of all sensors and actuators must be less than a specified budget, $, ii) the control energy must satisfy a specified upper-bound, U, iii) the closed loop performance must satisfy a specified covariance upper-bound, Y, of the output error, iv) adjustable parameters of the structure are coordinated with the joint structure/control design to achieve the required performance bounds, Y. Given a hardware budget $, and performance budgets U and Y, the paper shows what performance (Y) is achievable for a fixed cost $ and a fixed energy budget U. Alternatively, for a fixed performance and energy budget (Y,U) the paper shows the minimum hardware costs $ required to achieve this performance.

Biography
Dr. Robert Skelton is a TEES Distinguished Research Professor, and faculty fellow at Texas A&M University, Institute for Advanced Study. From 1975-1996, Dr. Skelton served as a professor of aeronautics and astronautics at Purdue University. In 1996, he became director of UCSD’s Structural Systems and Control Laboratory at the University of California, San Diego (UCSD). In 2006, UCSD named Dr. Skelton the Daniel L. Alspach Professor of Dynamics Systems and Controls in the Jacobs School of Engineering and professor emeritus in 2009. Dr. Skelton is a fellow of the Institute of Electrical and Electronics Engineers, an Emeritus fellow of the American Institute of Aeronautics and Astronautics, and a life member of the Alexander von Humboldt Foundation. His major awards include the SKYLAB Achievement Award, the Japan Society for the Promotion of Science Award, the Humboldt Foundation Senior US Scientist Award, the Norman Medal from the American Society of Civil Engineers, the Humboldt Foundation Research Award, and the NASA Appreciation Award. He is a member of the National Academy of Engineering.

Recovery of Function in Major Spinal Cord Injury Using Learning-Guided Spinal Stimulatione

Joel W. Burdick
Mechanical Engineering, Control & Dynamical Systems
California Institute of Technology, Pasadena, CA 91125

Abstract
Approximately 5,000,000 worldwide suffer from a serious spinal cord injury (SCI). Not only do the injured lose the ability to stand and walk (and sometimes move their arms), they suffer from additional injury-induced complications including loss of bladder and bowel control, decreased cardiovascular and pulmonary health, inability to regulate body temperature, and loss of muscle strength and bone density. The totality of the injury and its secondary dysfunctions makes daily activities of living a challenge. Because the median age of SCI in the U.S. is 32 years, SCI individuals amass an additional $1.4-$4.2 million in healthcare costs over their lifetimes.
A team of researchers at Caltech, UCLA, and Univ. of Louisville have been developing new technologies and new therapies for motor complete SCI patients—those who have lost motor control below the level of their injury. The centerpiece of this approach is a multi-electrode array that is implanted over the lumbosacral spinal cord either in in the epidural space between the dura and the interior of the vertebral canal, or on the skin over this area. When this technology is coupled with locomotor training and drug therapy (when possible), SCI patients receiving this therapy can stand independently and make some voluntary movements (after being in a wheel chair for over 3 years). More importantly, they can expect to make useful gains in cardiovascular health, muscle tone, as well as improved autonomic function such as bladder, bowel, blood pressure, and temperature regulation. After first reviewing our clinical successes, this talk will focus on current research on new machine algorithms for automated tuning of the stimuli parameters.

Biography
Joel Burdick received his undergraduate degrees in mechanical engineering and chemistry from Duke University and M.S. and Ph.D. degrees in mechanical engineering from Stanford University. He has been with the department of Mechanical Engineering at the California Institute of Technology since May 1988, where he has been the recipient of the NSF Presidential Young Investigator award, the Office of Naval Research Young Investigator Award, and the Feynman Fellowship. He has been a finalist for the best paper award for the IEEE International Conference on Robotics and Automation in 1993, 1999, 2000, 2005, and 2016. He was appointed an IEEE Robotics Society Distinguished Lecturer in 2003, and received the Popular Mechanics Breakthrough award in 2011. Prof. Burdick’s current research interests include rehabilitation of spinal cord injuries, nonlinear control of mechanical systems, sensor-based robot motion planning, and multi-fingered robotic hand manipulation.

Louis D. Friedman
Planetary Society Executive Director Emeritus
Pasadena, CA


Biography
Co-founder of The Planetary Society, with Carl Sagan and Bruce C. Murray, he has been a guiding force with the Society for over 30 years and remains as excited as ever about humanity's journey into the solar system. His college career began when Sputnik launched the space age. Lou earned a B.S. in Applied Mathematics and Engineering Physics at the University of Wisconsin in 1961, followed by an M.S. in Engineering Mechanics at Cornell University in 1963. He earned his Ph.D. from the Aeronautics and Astronautics Department at M.I.T. in 1971 with a thesis on Extracting Scientific Information from Spacecraft Tracking Data. From 1963-1968, Lou worked at the AVCO Space Systems Division on both civilian and military space programs. The following decade, 1970-1980, found him at JPL, involved in planning deep space missions. His projects included Mariner-Venus-Mercury, the Grand Tour (Voyager), Venus Orbital Imaging Radar (Magellan), Halley Comet Rendezvous-Solar Sail, and the Mars Program. In 1978-79, Lou went to Washington, DC as the AIAA Congressional Fellow and worked on the staff of the subcommittee on Science, Technology, and Space of the Senate Committee on Commerce, Science and Transportation. He frequently returns to Washington, DC to testify to Congress regarding important issues concerning the space science community and the members of The Planetary Society. Although the solar sail never launched for Halley's Comet, the concept of using light to propel a spacecraft intrigued Lou so much that he wrote a book on the subject, Starsailing: Solar Sails and Interstellar Flight, and led Cosmos 1, the solar sail mission created by The Planetary Society and Cosmos Studios. He also conceived the Living Interplanetary Flight Experiment developed by The Planetary Society. Lou stepped down from the Executive Director position in 2010. Since then he has been co-leader of the Asteroid Redirect Mission program for the Keck Institute for Space Studies at Caltech and is completing a book that examines the future of human spaceflight from Mars to the stars. Dr. Friedman is a Corresponding Member of the International Academy of Astronautics.

Banquet Speaker

John M. Goodman, Ph.D.

Biography
John M. Goodman is a writer, designer, consultant, and inventor. Educated at Swarthmore College (B.A. in Physics with minors in Math and Chemistry) and Cornell University (Ph.D. in Physics with a minor in the History of Science and Technology), he has taught at a variety of high-profile institutions including Harvey Mudd College and California Institute of the Arts. He also has been a consultant to numerous organizations including Scientific American magazine, the Charles and Rae Eames design studio, and Intelligent Optical Systems, among others. He is an author (with eight published books and numerous articles, so far), an inventor, a grant writer, and has taught physical science, mathematics, computer science and practical computer maintenance in a wide range of venues. He was President of one of the largest computer user groups in the nation as well as a respected journalist writing for InfoWorld and Byte magazines. He also founded and ran an interactive science museum, The Experience Center, which was the predecessor to the Discovery Science Center (now Discovery Cube) in Santa Ana and Los Angeles, CA. He is a life member of Phi Beta Kappa and Sigma Xi and has at times been a member of the Association for Computing Machinery, American Association for the Advancement of Science, American Association of Museums, American Association of Physics Teachers, American Physical Society, Computer Press Association, Institute of Electrical and Electronic Engineers, Mensa, Museum Educators of Southern California, and the Orange County Arts Alliance.